Related Resources: calculators
Shaft Reliability and Design Formulae and Calculator
Shaft in Torsion Reliability and Design Formula and Calculator
A shaft is a rotating member, usually of a circular cross section, used to transmit power or motion. It provides the axis of rotation, or oscillation of other parts such as gears, flywheels and pulleys and controls the geometry of their motion. One of the functions of a shaft is transmitting torque from one element to another on the shaft. Power is transmitted by means of rotational motion and developed torque from one end of the shaft to the other. An example would be a compressor as a load driven by a motor with the compressor shaft connected to the motor shaft via a shaft coupling. Typical shaft loads include such components as fluid drivers, gears, spline's and pulleys. Reliability issues for shafts include material strength, rotational speed, shear stress, temperature, and the operating environment.
Flexible shafts provide the capability of transmitting motion around corners. A flexible shaft is made by winding several layers of wire around a central core. Flexible shafts are rated by specifying the torque corresponding to various radii of curvature of casing. A wire rope may be used as a flexible shaft.
Preview: Shaft in Torsion Design and Reliaility Calculator
Shafts are primarily designed on the basis of the torsional moment which they transmit. This torque can be calculated using the following expression:
Eq. 1
Where:
T = torque, inlbs
hp = transmitted horsepower
N = Shaft rpm
shear stress on the shaft can be calculated from the following:
Eq. 2
$$S_s = {16 \cdot T \over \pi \cdot d^3}$$
Where:
d = shaft diameter, in
The reliability of the shaft itself is generally very high when compared to other components. Studies have shown (Reference Igor J. Karassik et al, Pump Handbook,) that the average failure rate for the shaft itself is about eight times less than mechanical seals and about three times less than that of the ball bearings. The possibility that the shaft itself will fracture, or become inoperable is very unlikely when compared to the more common component failure modes. Normally, it will be the seals or bearings of the component that will cause the initial problems. The effect of the shaft on reliability of other components is of greater importance than the reliability of the shaft itself.
The shaft reliability model is shown by the following equation:
Eq. 3
The above reliability equation for shafts assumes a constant rotational torque loading due to transmitted power and completely reversed bending loads on the shaft due to its rotation. In the case of large reciprocating loads such as those in piston engines and compressors, this assumption must be analyzed and the failure rate adjusted accordingly.
Where:
λ_{SH} = Shaft failure rate, failures/million cycles
λ_{SH,B} = Shaft base failure rate, failures/million cycles
λ_{SH,B} = 1 / N_{f}
Where:
N_{f} = Number of cycles to failure at application stress level, S_{ED}
S_{ED} = Material endurance limit, lbs/in^{2}
The endurance limit, SED, for some common steels and alloys is shown in Table 4
C_{f} = is the shaft surface finish factor that adjusts the base failure rate by an amount depending on the type of manufactured finish. If the design calls for a particular finish, then a variation from this finish during the manufacturing process will alter the reliability of the shaft. See table 3.
C_{T} = Material temperature multiplying factor
Eq. 4
C_{T} = ( 460 + T_{AT }) / 620 for T_{AT} > 160°
C_{T} = 1.0 for for T_{AT} ≤ 160°
Where
T_{AT} = Operating temperature, °F
C_{DY} = Shaft displacement multiplying factor
Eq. 5
where:
E = Modulus of elasticity of shaft material, lbs/in^{2}
b = Specified shaft deflection, in
D_{X,L,M,N} = Length of shaft section, in
I_{x, L, M, N} = Area moment of inertia in^{4}
Eq. 6
I_{x, L, M, N} = (π µ d^{4} / 64 )
Figure 1  Shaft Diameters
C_{SC} = Stress concentration factor for shaft discontinuities, such as shoulder radii or shaft grooves etc..
Eq. 6
C_{SC} = C_{SC,R} + C_{SC,G}
where
C_{SC,R} = Stress concentration factor due to transition between
shaft sections
C_{SC,G} = Stress concentration factor due to shaft grooves, see Table 2
C_{SC,R} = ( 0.3 / ( r / d ) )^{0.2} · ( D / d ) ^{ ( 1  ( r / d ) )}
Figure 2, Typical shaft assembly
where
r = Radius of fillet, in
D = Initial shaft diameter, in
d = Transitioned shaft diameter, in
Table 2, Stress Concentration Factor C_{SC,G} for Shaft Groves
h/D 
h/r 

0.1 
0.5 
1.0 
2.0 
4.0 
6.0 
8.0 

0.05 
1.10 
1.45 
1.60 
2.00 
2.05 
 
 
0.10 
1.00 
1.27 
1.40 
1.70 
2.00 
2.225 
 
0.20 
1.00 
1.10 
1.20 
1.31 
1.60 
1.75 
2.00 
0.30 
1.00 
1.10 
1.10 
1.20 
1.35 
1.48 
1.55 
Table 3, Shaft Surface Finish Factor
Finish 
C_{f} ( Eq. 7 ) 
Polished 
1.0 
Ground 
0.89 
Hot Rolled 
0.94  0.0046 T_{S} + 8.37 x 10^{6} (T_{S})^{2} 
Machined or Cold Drawn 
1.07  0.005 T_{S} + 2.21 x 10^{5} (T_{S})^{2}  3.57 x 20^{8} (T_{S})^{3} 
Forged 
0.75  4.06 x 10^{3} (T_{S})^{2} + 7.58 x x10^{6} (T_{S})^{2} 
T_{S} = Tensile strength of material, kpsi
Table 4, Average Values of Endurance Limits
Material 
Endurance Limit S_{ED} 
Steel, σ_{T,ult} ≤ 200 kpsi 
0.50 σ_{T,ult} 
Steel, σ_{T,ult}> 200 kpsi 
100 kpsi 
Magnesium 
0.35 σ_{T,ult} 
Nonferrous Alloy 
0.35 σ_{T,ult} 
Aluminum Alloy (wrought) 
0.40 σ_{T,ult} 
Aluminum Alloy (wrought) 
0.30 σ_{T,ult} 
Where:
σ_{T,ult} = Material ultimate tensile strength, psi
Reference:
 Hindhede, U., et al, “Machine Design Fundamentals”, John Wiley & Sons, NY, 1983
 Igor J. Karassik et al, Pump Handbook, McGrawHill Book Company, New York (1986).
 Shigley, J.E., Mischke, C.R. “Mechanical Engineering Design”, McGrawHill Book Company, NY, (1989)
 Centrifugal Pump & Mechanical Seal Manual, William J. McNally, 2009
 “Run Times”, August 2005, Dale B. Andrews, Lawrence Pumps, Inc.
 “Tidal Current Turbine Reliability: Power Takeoff Train Models and Evaluation, C. Iliev and D. Val, Third International Conference on Ocean Energy, October 2010
Related
 The Shaft Design Book
 Torsional Rigidity Solid Shaft vs Hollow Shaft Formulas and Calculator
 Shaft Keyway Shear and Yield Strength Formulae and Calculator
 Solid Shaft Equivalent of Hollow Shaft Strength Formula and Calculator
 Critical Speeds of Rotating Shafts with Single Loads Equations and Calculators
 Power Transmission Shaft Design Formulas and Calculator
 Shaft to Shaft Axial Alignment Tolerances
 ASME Shaft Design Allowable Stress and Diameter equations and calculators
 Distance Between Bearings on Shaft Design Formula and Calculator
 Bearing Shaft and Housing Installation Tolerances
 Critical Speeds of Rotating Shafts with Single Loads, First Critical Speed
 Shaft Torsional Deflection and Rigidity Formulae and Calculator
 Torsional Deflection of Shaft
 Static Loading Shaft or Axle Analysis Formula and Calculator
 Shaft Key Seat Depth Control Values S and T for Shaft and Hub ANSI B17.1
 Shaft (Arbor) Keyway Dimension Size Data  ANSI/ASME B94.191997
 Solid Shaft with Simple Bending Diameter Equation and Calculator
 Shaft Torsion Stress Calculator and Equations
 Diameter of Solid Shaft with Torsion Equation and Calculator