Water-Glycol Hydraulic Fluid

Lubrication Knowledge Menu

Water-glycol Hydraulic Fluid:

Water-glycol fluids contain from 35 to 60 percent water to provide the fire resistance, plus a glycol antifreeze such as ethylene, diethylene, or propylene which is nontoxic and biodegradable, and a thickener such as polyglycol to provide the required viscosity. These fluids also provide all the important additives such as antiwear, foam, rust, and corrosion inhibitors. Operating temperatures for water-glycol fluids should be maintained below 49C (120F) to prevent evaporation and deterioration of the fluid. To prevent separation of fluid phases or adverse effects on the fluid additives, the minimum temperature should not drop below 0 C (32 F).

Viscosity, pH, and water hardness monitoring are very important in water-glycol systems. If water is lost to evaporation, the fluid viscosity, friction, and operating temperature of the fluid will increase. The end result is sluggish operation of the hydraulic system and increased power consumption. If fluid viscosity is permitted to drop due to excessive water, internal leakage at actuators will increase and cause sluggish operation. A thin fluid is also more prone to turbulent flow which will increase the potential for erosion of system components.

Under normal use, the fluid pH can be expected to drop due to water evaporation, heat, and loss of corrosion inhibitors. The fluid pH should be slightly alkaline (i.e., above pH8) to prevent rust. However, because of their volatility and toxicity, handling of the amine additives that stabilize the pH is not recommended. Therefore, these essential additives are not usually replenished. Fluids with pH levels that drop below 8 should be removed and properly discarded.

Make-up water added to the system must be distilled or soft deionized. The calcium and magnesium present in potable water will react with lubricant additives causing them to floc or come out of solution and compromise the fluids performance. When this condition occurs the fluid is permanently damaged and should be replaced. To prolong the fluid and component life, water added to the system should have a maximum hardness of 5 parts per million (ppm).