Torsion Spring Design Calculator		
Input cells shown as blue		
Modulus of Elasticity $\mathrm{E}_{\mathrm{M}}=$	$1.100 \mathrm{e}+007$	$\mathrm{lbs} / \mathrm{in}$ ^2
Tensile Strength $\mathrm{T}_{\mathrm{s}}=$	$9.000 \mathrm{e}+006$	$\mathrm{lbs} / \mathrm{in}$ ^2
Spring cycle rate CR =	10.0	cycles/min.
Internal diameter ID =	1.000	in
Outside diameter OD =	1.100	in
Number of active coils $\mathrm{N}_{\mathrm{a}}=$	30.000	\#
Angular deflection from free position $\theta=$	0.500	rev.
Wire diameter $\mathrm{D}_{\mathrm{w}}=$	1.100	in
Calculated Results		
Eq. 1 Initial mean diameter $\mathrm{D}_{1}=$	1.050	in
Eq. 2 Mean diameter after deflection $\mathrm{D}_{\mathrm{C}}=$	1.033	in
Eq. 3 Body length undeflected $\mathrm{L}=$	34.000	in
Eq. 4 Body length length deflected $\mathrm{L}_{2}=$	34.650	in
Eq. 5 Bending stress $\mathrm{S}=$	183,407	$\mathrm{lbs} / \mathrm{in}^{\wedge} 2$
Torsion Spring Reliability Calculations		
Base failure rate for torsion spring, $\lambda_{\text {SP,B }}=$	14.3	fail/mil.-hours
Eq. 8 Multiplying factor $\mathrm{C}_{\mathrm{E}}=$	$5.750 \mathrm{e}-2$	-
Eq. 9 Multiplying factor $\mathrm{C}_{\mathrm{DW}}=$	2,167.311	-
Eq. 10 Multiplying factor $\mathrm{C}_{N}=$	0.102	-
Eq. 11 Multiplying factor $\mathrm{C}_{Y}=$	$9.41 \mathrm{e}-6$	-
Eq. 12 Multiplying factor $\mathrm{C}_{\mathrm{L}}=$	0.224	-
Eq. 13 Multiplying factor $\mathrm{C}_{\mathrm{CS}}=$	0.100	-
Eq. 14 Multiplying factor $\mathrm{C}_{\mathrm{DC}}=$	0.177	-
Eq. 15 Multiplying factor $\mathrm{C}_{\mathrm{R}}=$	1.000	-
Eq. 16 Multiplying factor $\mathrm{C}_{\mathrm{M}}=$	1.000	-
Calculated Results		
Eq. 6 Failure rate of torsion spring, $\lambda_{\text {SP }}=$	1.2102e-5	fail/mil.-hours
Eq. 7 Failure rate of torsion spring, $\lambda_{\text {SP }}=$	6.7654e-6	fail/mil.-hours

