Interference Press Fit Cylinder Design Ca	lculator		
Blocks shown as light blue are editable			
Outer hub diameter d _o =	2.0000	in 🗸	
Outer hub inner diameter d _h =	1.4000	in	
shaft outer diameter d _s =	1.5100	in	
shaft inner diameter d _i =	1.0000	in	
radius within outer cylinder material r_o =	0.8000	in	
radius within inner cylinder material r_i =	0.5500	in	
contact surface diameter, in compression $d_c =$	1.5050	in	
contact pressure applied p _c =	3.000	psi	
modulus of elasticity E =	42,000	psi	
modulus of elasticity hub E _h =	65,000	psi	
modulus of elasticity shaft $E_s =$	65,000	psi	
modulus of elasticity cast iron hub on steel shaft E_o =	32,000	psi	
modulus of elasticity steel shaft on cast iron hub E_c =	36,000	psi	
Poisson's ratio v =	0.350	-	
Poisson's ratio v _s =	0.350	-	
Poisson's ratio v _h =	0.350	-	
Calculated Results			
change in diameter of the inner member Δd_i =	-0.00024	in	Eq. 2
change in diameter of the outer member Δd_o =	0.00043	in	Eq. 3
original difference in diameters δ =	0.00019	in	Eq. 4
$\Delta d_s =$	0.00015	in	Eq. 5a
Δd _h =	0.00025	in	Eq. 5b
(exact) total change dia. of hub and hollow shaft δ =	0.00040	in	Eq. 5
(approx) total change dia. of hub and hollow shaft δ =	0.00043	in	Eq. 5c
shrinkage stress in the band σ_{θ} =	5.19006	psi	Eq. 6
Calculated contact pressure both materials same P_c =	0.838	psi	Eq. 7
tangential stress at radius r_o of outer cylinder $\sigma_{\theta\text{-}o}$ =	10.03610	psi	Eq. 8
tangential stress at radius r_i of inner cylinder $\sigma_{\theta\text{-}i}$ =	-7.15332	psi	Eq. 9
radial stress at radius r_{o} of outer cylinder $\sigma_{r\text{-}o}$ =	-2.20305	psi	Eq. 10
radial stress at radius ri of inner cylinder σ_{r-1} =	0.93224	psi	Eq. 11
tangential stress outside dia. of outer cylinder $\sigma_{\theta\text{-}oo=}$	7.83305	psi	Eq. 12
tangential stress inside dia. of outer cylinder $\sigma_{\theta\text{-oi}}$ =	10.83305	psi	Eq. 13
tangential stress outside dia. of inner cylinder $\sigma_{ heta$ -io =	-7.74299	psi	Eq. 14
tangential stress inside dia. of inner cylinder $\sigma_{\theta \text{-}ii}$ =	-10.74299	psi	Eq. 15
radial stress outside dia. of outer cylinder σ_r =	0.00000	psi	Eq. 16
radial stress inside dia. of outer cylinder σ_{r-oi} =	-3.00000	psi	Eq. 17
radial stress outside dia. of inner cylinder σ_{r-oi} =	-3.00000	psi	Eq. 18
radial stress inside dia. of inner cylinder σ_{r-ii} =	0.00000	psi	Eq. 19
tangential stress cast-iron hub on steel shaft σ_{θ} =	3.33405	psi	Eq. 20
allowable stress for brittle materials σ_{all} =	1.58133	psi	Eq. 21