Interference Press Fit Cylinder Design Calculator			
Blocks shown as light blue are editable			
Outer hub diameter $\mathrm{d}_{0}=$	2.0000	in $\quad \checkmark$	
Outer hub inner diameter $\mathrm{d}_{\mathrm{h}}=$	1.4000	in	
shaft outer diameter $\mathrm{d}_{\mathrm{s}}=$	1.5100	in	
shaft inner diameter $\mathrm{d}_{\mathrm{i}}=$	1.0000	in	
radius within outer cylinder material $r_{0}=$	0.8000	in	
radius within inner cylinder material $r_{i}=$	0.5500	in	
contact surface diameter, in compression $\mathrm{d}_{\mathrm{c}}=$	1.5050	in	
contact pressure applied $\mathrm{p}_{\mathrm{c}}=$	3.000	psi	
modulus of elasticity $\mathrm{E}=$	42,000	psi	
modulus of elasticity hub $\mathrm{E}_{\mathrm{h}}=$	65,000	psi	
modulus of elasticity shaft $E_{s}=$	65,000	psi	
modulus of elasticity cast iron hub on steel shaft $E_{0}=$	32,000	psi	
modulus of elasticity steel shaft on cast iron hub $\mathrm{E}_{\mathrm{c}}=$	36,000	psi	
Poisson's ratio $\mathrm{v}=$	0.350	-	
Poisson's ratio $\mathrm{v}_{\mathrm{s}}=$	0.350	-	
Poisson's ratio $\mathrm{v}_{\mathrm{h}}=$	0.350	-	
Calculated Results			
change in diameter of the inner member $\Delta \mathrm{d}_{\mathrm{i}}=$	-0.00024	in	Eq. 2
change in diameter of the outer member $\Delta \mathrm{d}_{0}=$	0.00043	in	Eq. 3
original difference in diameters $\delta=$	0.00019	in	Eq. 4
$\Delta \mathrm{d}_{\mathrm{s}}=$	0.00015	in	Eq. 5a
$\Delta d_{h}=$	0.00025	in	Eq. 5b
(exact) total change dia. of hub and hollow shaft $\delta=$	0.00040	in	Eq. 5
(approx) total change dia. of hub and hollow shaft $\delta=$	0.00043	in	Eq. 5c
shrinkage stress in the band $\sigma_{\theta}=$	5.19006	psi	Eq. 6
Calculated contact pressure both materials same $\mathrm{P}_{\mathrm{C}}=$	0.838	psi	Eq. 7
tangential stress at radius r_{0} of outer cylinder $\sigma_{\theta-\mathrm{o}}=$	10.03610	psi	Eq. 8
tangential stress at radius r_{i} of inner cylinder $\sigma_{\theta-i}=$	-7.15332	psi	Eq. 9
radial stress at radius r_{0} of outer cylinder $\sigma_{r-0}=$	-2.20305	psi	Eq. 10
radial stress at radius ri of inner cylinder $\sigma_{r-1}=$	0.93224	psi	Eq. 11
tangential stress outside dia. of outer cylinder $\sigma_{\theta-00}=$	7.83305	psi	Eq. 12
tangential stress inside dia. of outer cylinder $\sigma_{\theta-\text { oi }}=$	10.83305	psi	Eq. 13
tangential stress outside dia. of inner cylinder $\sigma_{\theta-\mathrm{io}}=$	-7.74299	psi	Eq. 14
tangential stress inside dia. of inner cylinder $\sigma_{\theta-i i}=$	-10.74299	psi	Eq. 15
radial stress outside dia. of outer cylinder $\sigma_{r}=$	0.00000	psi	Eq. 16
radial stress inside dia. of outer cylinder $\sigma_{r \text {-oi }}=$	-3.00000	psi	Eq. 17
radial stress outside dia. of inner cylinder $\sigma_{r-\text { oi }}=$	-3.00000	psi	Eq. 18
radial stress inside dia. of inner cylinder $\sigma_{\text {r-ii }}=$	0.00000	psi	Eq. 19
tangential stress cast-iron hub on steel shaft $\sigma_{\theta}=$	3.33405	psi	Eq. 20
allowable stress for brittle materials $\sigma_{\text {all }}=$	1.58133	psi	Eq. 21

