Results 1 to 2 of 2

Thread: GD&T Linear Distance from Edge to Edge

  1. #1

    Join Date
    Mar 2021
    Posts
    1

    GD&T Linear Distance from Edge to Edge

    Hi,

    I have a part that I am unsure how to dimension properly. I have a linear measurement from two nominally parallel lines. However one of the lines has a perpindicularity callout. I want the measurement to be from the edge to a plane going through the highest point on the other edge. Other than just describing it via text, is there a GD&T callout I could use to indicate his?

    [IMG]https://www.engineersedge.com/engineering-forum/image/png;******,iVBORw0KGgoAAAANSUhEUgAAAXcAAAHqCAYAAAD/OA5jAAAgAElEQVR4Ae3dTbLkvJGl4W81GtageqDeSg2qllGL6k 1mGySDGUXxzxlEhDv4fGZXjCBB0MP9+IuTiLypv/7Pf/7HHz9yQAM0QANzaeAvBZ2roOqpnjRAA00D4O5PLv7kRgM0MKEG wH3ConJunBsN0AC4gzvXRgM0MKEGwH3ConJtXBsN0AC4gzvXRg M0MKEGwH3ConJtXBsN0AC4gzvXRgM0MKEGwH3ConJtXBsN0AC4 gzvXRgM0MKEGwH3ConJtXBsN0AC4gzvXRgM0MKEGwH3ConJtXB sN0AC4gzvXRgM0MKEGwH3ConJtXBsN0AC4gzvXRgM0MKEGwH3C onJtXBsN0AC4g3sq1/Y///1fl+Jp485+rgDubA7xyPORjjLrB9zB/RJMjwTuGpdIA/k0AO7gDu40QAMTagDcJywqF5XPRamJmnxbA+AO7lwbDdDAhBoA 9wmL+m2H4HlcKQ3k0wC4gzvXRgM0MKEGwH3ConJR+VyUmqjJtz UA7uDOtdEADUyoAXCfsKjfdgiex5XSQD4NgDu4c200QAMTagDc JywqF5XPRamJmnxbA+AO7lwbDdDAhBoA9wmL+m2H4HlcKQ3k0w C4gzvXRgM0MKEGwH3ConJR+VyUmqjJtzUA7uDOtdEADUyoAXCf sKjfdgiex5XSQD4NgDu4c200QAMTagDcJywqF5XPRamJmnxbA+ AO7lwbDdDAhBoA9wmL+m2H4HlcKQ3k0wC4gzvXRgM0MKEGwH3C onJR+VyUmqjJtzUA7uDOtdEADUyoAXCfsKjfdgiex5XSQD4NgP sB3P/+528czUF+NHS+hlYTNekaKAX3KGzb+K2f/uHPjtHn9fnWz+znrx7X9x/FsTX2aPzVGNq49Tzr93tzXR23d7/zAEUDn2ugDNwbMKLQiI5fC+rO/Vv3bJ1bP6u/b2PX47fOLcf3108ft+I4e8ZRrGf3uv55Q8uhHHYNgPvBtsMabj 1pe8ej8UfXlvPtjWvnt65tnVvOd/f1et71++W87Vr/aeePxi7v8xqIaGCcBkrAvcOiH68KIjp+PW/0/qPxR9f6c8/GbF3fOtfn++S4nnf9/mjuyNijeVwb1/hyO39u08N9CYrl6zNxRsbuzRWZ48rYszHR62fj9z7XlfPrudfv j+aIjD2ax7X5AaTG42qcGu5rSKzfHwmjj23H5c/RPetrfY71+a33V8ZeGbM1dz+3vr+/b8flTx9/9bi89+rro7nbHEfXXRvX0HIrt10DU8N9DZkOrv7h+/u7xz5PO66ftbzWX18Z08euj1v39riXY7fOLa9feb1+1vr92RzR 8WfzuQ5YNBDXQFq4bwFi69xe0ffG7p3fmufpsZH5lvHs3Rc9v5 zz6PV63vX7o3vbtej4s/lcjze2nMlZSrjvwWHvfFTIV+e5Oq49/8rYK2OWn6WNj97T73/qvjvz3Lmnx+0ISjTwjAbA/aG/CnkFaFfGdGFHxvZ7lser97dx0Z/lc7ZeX3321r3OPdPY8iiP6eB+BTRnwj2Dy9n1Pv/VcW38lbFXx1wd1+PcOl6ZY31fu2d93/r9+p6t93fu2ZrHOYCigfsaSAf3o2JehcbZuLPrPYar466MvzrX U+OuztNjb8f1Pev3y7FHr+/e1+b88+ev1H/TJnt8R3Vx7T4oK+ZuSri3QuwBZu/8VvEiY4+eeXatP/up50Xn2Xv+U/P0+a8cs8Mze3xXcmzMOyBfHu57AGrn19e2zh0JfX3/0dh+beueT871ebeOW59n69zWvetz6xjX79fjj95/cm92eGaP76gurr0D6r3O08K9fcAOun7sH7of+/m7xz7P+rieb329vW9j1ufX9229P7tnff3q+3U86/dX52njPrk3Ozyzxxepk7Fzw74U3IlxbjG2+maHZ/b49Mj8PXK1xuB+8FchrybRuOca6i48231X742MXdf26jO27rt7 73ou75/T28y5BHdw/7ftoV8K/giAHcpHxyuxH93fr+3N064fXev37x337nUesJ/WQDq47zWF8/90pvIgDzRAA1c0kA7uT69e5qvliJpo92p2RdB79y7Pn82zHLt+ fRRfG/vJ3OtneV9Lu9nqBe62ZXZh+guxnsFzL6YO1b3ry/N3n9Hm+NW9y/i9Bv0rGgB3cJ8C7lfE/sSYT+D+xPPNAexXNQDu4A7uAQ2AO7heheuvx4F7oLF/Xaw3PD87PLPH9waN+IzXFlhwB3fOPaABcL8GFgD+fZ7APdDYBD tesNnhmT0+Gh2v0So5Bndw59wDGgB38AT3QMNUSZY4xzd2dnhm j49Gx2u0So45d4sQ5x7QALiDJ7gHGqZKssQ5vrGzwzN7fDQ6Xq NVcsy5W4Q494AGwB08wT3QMFWSJc7xjZ0dntnjo9HxGq2SY87d IsS5BzQA7uAJ7oGGqZIscY5v7OzwzB4fjY7XaJUcc+4WIc49oA FwB09wDzRMlWSJc3xjZ4dn9vhodLxGq+SYc7cIce4BDYA7eIJ7 oGGqJEuc4xs7Ozyzx0ej4zVaJcecu0WIcw9oANzBE9wDDVMlWe Ic39jZ4Zk9Phodr9EqOebcLUKce0AD4A6e4B5omCrJEuf4xs4O z+zx0eh4jVbJMeduEeLcAxoAd/AE90DDVEmWOMc3dnZ4Zo+PRsdrtEqOOXeLEOce0AC4gye4Bxqm SrLEOb6xs8Mze3w0Ol6jVXLMuVuEOPeABsAdPME90DBVkiXO8Y 2dHZ7Z46PR8RqtkmPO3SLEuQc0AO7gCe6BhqmSLHGOb+zs8Mwe H42O12iVHHPuFiHOPaABcAdPcA80TJVkiXN8Y2eHZ/b4aHS8RqvkmHO3CHHuAQ2AO3iCe6BhqiRLnOMbOzs8s8dHo+M1 WiXHnLtFiHMPaADcwRPcAw1TJVniHN/Y2eGZPT4aHa/RKjnm3C1CnHtAA+AOnuAeaJgqyRLn+MbODs/s8dHoeI1WyTHnbhHi3AMaAHfwBPdAw1RJljjHN3Z2eGaPj0bHa 7RKjjl3ixDnHtAAuIMnuAcapkqyxDm+sbPDM3t8NDpeo1VyzLl bhDj3gAbAHTzBPdAwVZL1P//9X6lAeJa3avG2z9Pgmfu/7PHlzp7ovpcBzj2wCFWDZbV4O9zPFq1fXufcOfdf6i/ybHAH91R/GskOz+zxRZrf2LkXKnAHd3APaADc5wbiTAseuAcau9o2R7V4W2 O1/zI3GLiDe2Z9LmMDd3BPBVNwB88loLy+rwdwB3dwD2iAc78PG6D +bu7APdDY1bY5qsXbmv///e//TbXYrIEE7t8F1Dr/3l/PP7iDeyqYgvv15gU6uTrSALgH4H6USNeeaTRwfyaP9CiP4A7un HtAA7ZlQLPKwgnugcauUtTKcXLu4FlZv5liB3dw59wDGuDcLT6 ZAH4UC7gHGvsoka490/Sc+zN5pEd5BHdw59wDGuDcQbPKwgnugcauUtTKcXLu4FlZv5li B3dwT+Xc/fMD4J4JkJVjAXdwTwf3f/zrYWn/x/9ZR9rSCOxfMgDuAbhX+3X+avE2l9T+y+yW7Ln7k0VmfS5jA3dw TwVTe+7guQSU1/f1AO7gDu4BDXDu92ED1N/NHbgHGrvaNke1eFvz25b5LgAAd958gzu4p3Lu4D4vbCwk360tu IM7uAc0YFvmu4CyINzPN7gHGrvaNke1eFsj+0L1fjMDodwtNQD u4J7KuYM7QC0B5fV9PYA7uIN7QAO2Ze7DBqi/mztwDzQ2cY4XJ+c+Psd0/I4cgzu4c+4BDXDu7wDjDAsguAcae4aCZ/8MnDt4ZtdolfjAHdw594AGOHeLD7gHGqZKssQ5vrE59/E5puN35Jhztwhx7gENcO7vAOMMCyC4Bxp7hoJn/wz++QHwzK7RKvGBO7incu7gDu5V4Jk9TnAHd3APaMC2jMUnO9R 7fOAeaOxq/1ZLtXibKH2hCp4dTo6faQHcwT2Vcwf3zxoaEOWvawDcwR3cAxq wLQOeHZ7Zj+AeaOxq2xzV4m3N4gtV8MwOzSrxgTu4p3Lu4A7uV eCZPU5wB3dwD2jAtozFJzvUe3zgHmjsatsc1eJtovSFKnh2ODl +pgVwB/dUzh3cP2toQJS/rgFwB3dwD2jAtgx4dnhmP4J7oLGzF3OG+Dh38JxBxxk+A7iDO+ ce0ADnbvHJAO4rMYB7oLGvJNSYz5qfc/8sf/Qnf10D4A7unHtAA5w7eHZ4Zj+Ce6Cxsxdzhvg4d/CcQccZPgO4gzvnHtAA527xyQDuKzGAe6CxryTUmM+a3z8/8Fn+6E/+ugbAHdxTOXdwB6cOJ8fPtADu4A7uAQ3YlvkMOID9vfyBe6Cxq/1bLdXibY3vC9XvNT/Qzp1rcAf3VM4d3OcGjgXle/UFd3AH94AGbMt8D04Wgs9yDe6Bxq62zVEt3tbMvlD9rKEBUf66 BsAd3FM5d3AHpw4nx8+0AO7gngru9tw/a2hAlL+uAXAHd3APaMCeO3h2eGY/gnugsavtYVeLtzUL5w6e2aFZJT5wB3fOPaABzt3iA+6BhqmSLH GOb2zOfXyO6fgdOebcLUKce0ADnPs7wDjDAgjugcaeoeDZP0NF 5/6Pv5zvf2QgWQbAHdw594AG1s699XP2BVN87/zTBrgHGluTjG+SSs4d2MfrQc/dzzG4g3sq55kdmN25Z48TFO9DcZbcgTu4g3tAAw3uwA6cFRYAc A80doWCVo8xOzjBHdir9Bi4g3sq515pz71Kk4vznQsSuAfgXu3 X+avF2yAE7u8EkQXo+bqDO7hz7gEN9C9Uweh5GMnpszkF90BjV 3PC1eJtzV1hzx2EnoWQfI7JJ7iDeyrnDu5jGh1A35dXcAd3cA9 owLbM+yBZdWEE90BjV9vmqBZva6L8X6j65waqwu5tcYM7uKdy7 uDOGb8NwqM+L7iDO7gHNJD9O4FRoDBvvUUX3AONXW2bo1q8DSC cez2IAH/OmoF7AO5EPF7E4D4+x3T8jhyDO7jblglowLbMO8A4wwII7oHGn qHg2T8D5w6e2TVaJT5wB3fOPaABzt3iA+6BhqmSLHGOb2zOfXy O6fgdOebcLUKpnHt2Z5w9PuB+B7iv1BncwR3cAxoAd/C8AtYMY8A90NgZCjZ7DNnhmT2+2fXh811fXMEd3FM5d3vu15sX 6OTqSAPgHoB7td/4rBZvEyq4A9YRsFy7rg9wB3fOPaAB2zLX4QLEv80VuAcau5oTr hZvg0F2eGaPD1B/C9RM+Qd3cE/l3LPDM3t8meAilt8uNOAO7uAe0AC4/xZYFozr+Qf3QGNX2+aoFm9rXF+oXm9eoJOrIw2AO7incu7gDlh HwHLtuj7AHdzBPaAB2zLX4QLEv80VuAcau9o2R7V4Gww4998CA ZDnyT+4B+BO+OOFD+7jc0zH78gxuIO7bZmABmzLvAOMMyyA4B5 o7BkKnv0zcO7gmV2jVeIDd3Dn3AMa4NwtPuAeaJgqyRLn+MbOD s/s8dHoeI1WyTHnbhFK5dyzwzN7fFXAI87xixC4gzu4BzQA7uOhB PzP5BjcA41NdM+I7iiPvlAdn+Oj/Ls2T/7BHdxTOXdwnwcuForf1hLcA3Cv9huf1eJtMAD33wIBkOfJP7iD eyrnnn1PO3t84DwPnD+tJbiDO7gHNADu4PkpdL91P7gHGrvaNk e1eJvos8Mze3zfAofn5F/kwB3cUzl3e+75oQHsNWoE7uAO7gENcO41wGYB+o8/4B5o7GrbHNXibQ3JuYMnMD+jAXAHd849oAHO/RnwAPj4PIJ7oLGrOeFq8XLu4xseVN+TY3APwF1jjG8M2zLjc0z H78gxuIO7bZmABmzLvAOMMyyA4B5o7BkKnv0zcO7gmV2jVeIDd 3Dn3AMa4NwtPuAeaJgqyRLn+MbODs/s8dHoeI1WyTHnbhFK5dyzwzN7fFXAI87xixC4gzu4BzQA7uOhB PzP5BjcA41NdM+I7iiPvlAdn+Oj/Ls2T/7BHdxTOXdwnwcuForf1hLcA3Cv9huf1eJtMPjz569Ui80aULZl fgusdT28368HuIN7Gpg2sGeHZ/b4wG4fdm/LDbiDO7gHNADu4FllkQD3QGNX2+aoFG/fjskOz+zxVQGPOMcvkiG4//OPze2Pzn7k4Nm98Q53X6iOb3pgfUeOw3CfRRgdJpHPk90Jrz/TyHjXz4rkcT12ORe4vwM8aw14/3zdwX2ibZklJFuzVID7OmZwf77JgfOdOQV3cL/1heoayncBsp4H3N8Jorv6cd++XlLB/e9//nYLNHcKvIbKlTlGOuErzz8bs/5MI+NdP+sstq3rW3OA+36zbuXQOfna0wC4B5z7XhKznN+C5ajY nnjW1hzgDlajNPu2ecEd3G/9aWkLzJHm2bsf3ME9oiNj9/UC7uAO7gEN+Hvu+zAB2ly5AfeLjd2+D/jGdwL9OXeeteeGj5ruznPafHee1eM4ujc7PLPH13PsmAu0v6gH uF+A+xKAy9dPF2w9d3u/Pnf0zCNo7t0XmX85x51n9fuP7s0Oz+zx9Rw7gju4n8B9C35b5z 5tpr05985vPe8Imlvj+9z9uDVm71z0WX2es/uywzN7fD3PjuAO7kngvteMEfCegXP9jD53P66vH72PPqvPdXaf L1RBqWvF8TMtgPsNuDfR3QHiHbFGnnMGzvXz+9z9uL5+9D76rA btdk877v2053W49zHLGPq5o+Pe+L3ze3PtjV869717l+f35tk7 v7x3+bqP3zrXri3P773uc6zH753/9Tx7z1+e34t97/zy3uXrvfF755f3Ll/vjd87v7x3+Xpr/Na55T3r1+B+APcj6B1dWxbh09eR50SB2+fux0is0We1ua/c0wQaiePbY5dw//azPe8zJ/u2/IF7AO7L3/i8A8Q74oo8Zw3PZbzrZ6/nXb9fj1+/Xz9rfX39/ur47PDMHt86796/d0EA96Rwb7D9FLjg/nxjg/vzObUAjckpuCeEexTqvTnW7ng03Nvzrv70GM+O2eGZPb6z/Lo+BqQZ8wruyeB+F+xNXFfhvvWMrXNHgl0/62hs5Jo99/fAJ6ILY+O6APdEcI8Cdi34NXD3nHt7zt7Pes699+tn7Y2Lngf3 eBNHc2z8O3IM7gdwb02wBO4SlsvzTzXLp3OugbuMdxnj3nP2zi/v7a/Xz+rnPz2C+zvA86lO3H+uE3C/AfcIBK+K8Ik518AF9/MGuFqfPs6e+/M57bl1fDa34P4yuB8tIkfX1o23XkjW1+++59yfbfC7dXBf/TqA+wncm8g79JoT7q+viH/U2L1nr4G75dzPYjq73p+9flY//+kR3OtD5VMNuP8ZDYD7Bbg3sTXoXQVfF2fknj5269jnOzteAW7 0M+w988qz9u49Og/uzzT2UY5de0eOwf0i3Cs0xCjgbn32Uc8C93eAZ0tTzj1be3AH9 1v/lgu4P9uIwCafT2sA3ME9Fdyz/22U7PE9DQjz1V10HoX71n7xN89FhDjKeUZieHrsNz/TqGdlh2f2+J7WlPnA/Zb7+6VwRsHpLZ9pVP6ywzN7fL/Un2fnWggede6VijsKTr/MwTc/06hn+UI1FyB+qWfP/kwL4G7P/dafusD9s8YDLvkbrYEw3FtT+5EDcAen0XAy/2caC8H97cne+o3PzDmpFm/LZfY97ezxZdaj2D6DdTR/4B7YlqkGy2rxgvt3mz8KC+Nr1Qfcwf3WnvuoRs/ujLPHN6ou5q0F9lYvcAf3VHD3t2XqQQT4c9YM3MEd3AMa4Nxzg swC8+91AfdAY1fbw64Wb2tQzv3fmxS45OSOBsAd3Dn3gAY4d6C 9A9pf3APugcau5oSrxdsagHMHz1+AcMZngju4c+4BDXDuFp8qC wG4Bxq7SlErx8m5g2dl/WaKHdzBnXMPaIBzt/hkAvhRLOAeaOyjRLr2TNNz7s/kkR7lEdzBPZVzz+6Ms8cH6qDeNQDu4A7uAQ2AO3h2eGY/gnugsbMXc4b4ssMze3wzaMBneGYBBXdwT+Xc7bk/09gAKY/gDu7gHtAA5w6aVRZOcA80dpWiVo4zOzyzx1e59mJ/duEE9wDcq/06f7V4W3Nnh2f2+ADyWUBWzie4g3uqbZns8MweX2UYif3ZhQnc wT0V3H2h+myDA+Z78wnu4A7uAQ1w7u+FZbWFEtwDjV1tD7tavK 15OHfwrAbRrPGCO7hz7gENcO4Wn6wwX8cF7oHGruaEq8XbxMm5 g+caUt7f0wS4gzvnHtAA534PNAD9/byBe6CxqznhavFy7t8HAOjOm3NwD8BdI4xvBNsy43NMx+/IMbiDu22ZgAZsy7wDjDMsgOAeaOwZCp79M2SHZ/b4stdXfN9bHMEd3FM59+zwzB4feH4PntlzDe7gDu4BDYA7eGaH eo8P3AON3ZPmOK7BfaE6Lrd0+67cgju4p3Lu4P4uAFlwxtUb3M Ed3AMasC0zDkZA/2xuwT3Q2MT3rPi28pkdntnj28qpc+N1mzHH4B6Ae7Xf+KwWb2u Q7PDMHl9GyIjpN4sLuIN7qm2Z7PDMHh+Q/gakGfMO7uCeCu6+UAWnjKCsGBO4gzu4BzTAuVt8qoAe3AONXW0 Pu1q8rWk4d/CsAs/scYI7uHPuAQ1w7haf7FDv8YF7oLGrOeFq8TZRcu7g2eHk+JkWw B3cOfeABjj3z4AD2N/LH7gHGruaE64WL+f+vcYH2flzDe4BuGuI8Q1hW2Z8jun4HTkGd 3C3LRPQgG2Zd4BxhgUQ3AONPUPBs3+G7PDMHl/2+orve4sjuIN7KueeHZ7Z4wPP78Eze67BHdzBPaABcAfP7FDv8 YF7oLF70hzHNbgvVMfllm7flVtwB/dUzh3c3wUgC864eoM7uIN7UAO2ZsYBCeyfyy24Bxub+J4T31Yu K4CzQoxbuXVurHaz5RfcA3Cv9huf1eJtzVEFnFXizAYc8XxvgQ F3cLctE9DAEk4A/z1QLfPu9bW8g3ugsas54WrxtqbN/oXqGiwAfw0067x5Pz5v4A7unHtAA1tQaoBf/rc1xrnxMJPjf80xuAcau5oTrhZva85qzn0LKEvQey0Dv8oAuIM 75x7QwBbMnftXxygfOfIB7oHGruaEq8XboDCDcwe3HHB7ex3AH dw594AG3g4Mn7/OwgXugcau5oSrxdvAwbnXgQfQ564VuAfgTszjxQzu43NMx+/IMbiDe6ptmfY3C8DnHfBR57F1BndwTwVTcB/b8ID6nvyCO7iDOw2k0oAF6JkFCNw1dqrGtuf+TGMDpDyCO7iDO w2k0oCF6ZmFCdw1dqrG5tyfaWyAlEdwB/dUcPeFKihZmJ7RALiDO7jTQCoNgDu4f12Q1X7js1q8rak592ca GyDlkXMPuLZqsKwWbwOSPXdQsjA9owFwB/ev/wnoqHnB/ZnGPsqxa+/IMbiDO7gHNACM7wDjDHUG90BjV9vmqBZvayjOHTxnAGuGzwDu4 M65BzSQoWnFYAG8ogFwDzR2NSdcLd4mWM4duK6Ay5hznYA7uHP uAQ2AyjlU5ChHjsA90NjVnHC1eBsUOPccYADo+nUA9wDcCX684 MF9fI7p+B05BndwT7Ut4zdU3wEeC8z4OoM7uIM7DaTSAPA/A35w19ipGptzf6axAVIewR3cU8HdnjsoWZie0QC4gzu400AqDY A7uBPkhFDi3J9pbICUR859QkBWbmx77qBUWb+ZYgd3cE/1JyBwB/dMgKwcC7gH4F7tNz6rxdsaCdzBvTJQM8UO7uCeyrnbcwf3TICs HAu4gzu4BzRQudnF/q6FE9wDjV1tm6NavA0+nPu7AGTBGVdvcAd3zj2gATAaByO5fTa 34B5o7GpOuFq8nPuzzQ2W784nuIM75x7QAGC+G5iV6g/ugcau5oSrxcu5A2cleGaPFdzBnXMPaCB7Q4vPAtk1AO4aOxXc/RITOHU4OX6mBXAHd3CngVQaAPXPoN7zB+4aO1Vjc+7PNHZvcMf 35hPcwT0V3P0S03thZCF6tvbgDu7gTgOpNADyz0Ae3DV2qsbm3 J9pbICUR3AH91Rw/8e/+et/ZEAGPs4AuIN7OrhznVwnDXyuAXAHd3CngVQaAPbPwd5yCO6Bxq 726/zV4m2CtOf+TGMDpDyCO7incm3gDkoWpmc0AO7gDu4BDQDPM+CR x/F5BPdAY1fb5qgWb2t4zn180wPrO3IM7uDOuQc0AIzvAOMMdQb3 QGNXc8LV4uXcgXMGqGb5DOAO7px7QANZGlccFsIzDYB7oLGrOe Fq8Tax2nMHrTNouX5NI+AO7px7QAPAcg0s8vT7PIG7xk4F9/YPagDD78GgBvVrAO7gngqm4F4fKhaGHDUEd3AHdxpIpQGLwzOL A7hr7FSN7QvVZxobIOUR3MEd3GkglQYsTM8sTOCusVM1Nuf+TG MDpDyCe3K4//nz1x8/I3Lw8f/RjQlkIHUGwD053JsD+xTuXBwXRwPv0wC4Tw53Tf2+plZzNW8aA PcCcG+FuuveqzW6PXdgqqbZrPGC+8Rwzyq6o7jAHdyP9OHadX2 AexG4N1FH3XvFRgD3681bsb5i/l59wX1SuFdtInD/XvNX1Yi4r2kE3AvBvYn6inuvLH5wv9a4lWss9u/UGNyLwf0K4Cs3D7h/p/Era0Ts1zQC7pPBvbrwwf1a41avs/jH1xncC8K9Ncbe9kz1pgH38U1fXSPiv6YRcJ8I7kR/TfTyJE9v0AC4F4V7E+fSvb9BrD4jKNPAdQ2AO7in+lchNe/15pUruTrSALgXhnsrbHPvRwV2DQBo4J0aAHdwtzgU1wB4vxPeZ 3UH9+KNzblr7LMmd/2dGgF3cOfci2sAvN8J77O6g3vxxubcNfZZk7v+To2AO7hz7sU1 AN7vhPdZ3cG9eGNz7hr7rMldf6dGwB3cOffiGgDvd8L7rO7gXr yxOXeNfdbkrr9TI+AO7px7cQ2A9zvhfVZ3cC/e2Jy7xj5rctffqRFwB3fOvbgGwPud8D6rO7gXb2zOXWOfNbnr7 3poHFoAAAQuSURBVNQIuIM7515cA+D9Tnif1R3cizc2566xz5r c9XdqBNzBnXMvrgHwfie8z+oO7sUbm3PX2GdN7vo7NQLu4M65F 9cAeL8T3md1B/fijc25a+yzJnf9nRoBd3Dn3ItrALzfCe+zuoN78cbm3DX2WZO7/k6NgDu4c+7FNQDe74T3Wd3BvXhjc+4a+6zJXX+nRsAd3Dn34ho A73fC+6zu4F68sTl3jX3W5K6/UyPgDu6ce3ENgPc74X1Wd3BP0tjNgX/750wcroMGDdTVALgngvu3G8mWTt3G/bZWPK+eVsAd3G3LJNEAgNYDaOaagXuSxv6Fi/7FMzM3g9jAdSYNgDu4c+5JNDATWHyW3y+U4J6ksX/hon/xTE3/+6ZXg3fUANzBnXNPogHQfQd0v1VncE/S2L9w0b945reE7TlA+XYNgHtxuP/9z99uO29wB8C3A3Dmzw/u4H57cZi5MXw2C191DYD7BHC/6945dwCrDjDx72sY3AvDvUO9H6NCB/f9xojm0ni5zKYBcAd32zJJNJANDuKpvWCBe5LGvuOiu2Pvx2gz 3nlm9BnG1waE+tWtH7hPAPfWgHcAD+51Gxd01e5MA+BeFO5rmK/fnxW+XQd3gLiiE2Nq6gTcwd2eexINgGhNiGatG7gnaeyoi1479 fX7K4KLPvPKnMYAFA3k0AC4TwL31lBRwIN7jiYEQ3UYoQFwLwj 3BvG9n4hIwB1UInoxtpZewL0o3LcajXOv1XxbNXRODZ/SALhPBPcmigjgOXcgeQok5smnJXAHd39bJokGADIfICvXBNyTN PZVF33mzM+uL8V69ZnLe7wGIBqooQFwnwzukcYD9xpNGqmpsWr aNQDuxeDeC/fEEdyB4AkdmSOnjsAd3O25J9EASOaEZNW6gHuSxv6Fi/7FM6s2iriBt5oGwB3cOfckGqgGD/HmXvDAPUlj/8JF/+KZgJAbCOozT33AHdw59yQaANZ5wJqhluCepLF/4aJ/8cwMohcDiL5BA+CeCO4Ntt/8eYPAfUYgf6sGwD0J3N8qQJ8bfGlgjAbAHdztudMADUyoAXCfs Kic0BgnJK/yWkkD4A7uXBsN0MCEGgD3CYtayV2IlRumgTEaAHdw59pogAYm1 AC4T1hUTmiME5JXea2kAXAHd66NBmhgQg2A+4RFreQuxMoN08A YDYA7uHNtNEADE2oA3CcsKic0xgnJq7xW0gC4gzvXRgM0MKEGw H3ColZyF2LlhmlgjAbAHdy5NhqggQk1AO4TFpUTGuOE5FVeK2k A3MGda6MBGphQA+A+YVEruQuxcsM0MEYD4A7uXBsN0MCEGgD3C YvKCY1xQvIqr5U0AO7gzrXRAA1MqAFwn7ColdyFWLlhGhijAXA Hd66NBmhgQg2A+4RF5YTGOCF5lddKGgB3cOfaaIAGJtTA/wesgj8YomghwAAAAABJRU5ErkJggg==[/IMG]

    Thanks
    Attached Images Attached Images

  2. #2
    Associate Engineer
    Join Date
    Jul 2021
    Posts
    3
    Would it help if the edge (surface) with the perpendicularity tolerance was then also defined as datum B? You could then assign a profile tolerance of 0.5 mm to the other edge referencing B as the datum and make the 4.5 mm dimension a basic dimension. The 0.5 mm profile tolerance is understood to be centered about the 4.5 mm nominal dimension ( equivalent to +/- 0.25 mm). The profile tolerance applies to the whole length of the edge and it would need to be checked at various places along that edge (at least 3) and so the highest and lowest points measured would be the worst case. Did I understand the question correctly?

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •