**Related Resources: calculators**

### Circular Ring Analysis with equal radial forces Equations and Calculator

**Circular Ring Moment, Hoop Load, and Radial Shear Equations and Calculator #7**.

Ring under any number of equal radial forces equally spaced.

Per. Roarks Formulas for Stress and Strain Formulas for Circular Rings Section 9, Reference, loading, and load terms #7.

Formulas for moments, loads, and deformations and some selected numerical values.

Circular Ring Loading #7 |
Circular Ring Dimensional Properties |

Resultant moment, hoop load, and radial shear |

Preview: Circular Ring Moment, Hoop Load, and Radial Shear Calculator #7

Formulas for moment, hoop load, radial shear and deformations Ring under any number of equal radial forces equally spaced.

For 0 < x < θ

Moment

M = [ W R ( u/s - k_{2} / θ ) ]

Hoop Stress

N = W u / ( 2 s )

Radial Shear

V = - ( - W z ) / ( 2 s)

R_{i} / t ≥ 10 means thin wall for pressure vessels (per. ASME Pressure Vessel Code)

Hoop Stress Deformation Factor α

α = e / R for thick rings

α = I / AR^{2} for thin rings

A = π [ R^{2} - R_{i}^{2} ]

Transverse (radial) shear deformation factor β

β = 2F (1 + v) e / R for thick rings

β = FEI / GAR^{2} for thin rings

k_{1} = 1 - α + β

k_{2} = 1 - α

Plastic section modulus

F = Z / I c

Z = Z_{x} = Z_{y} = 1.33R^{3}

I_{x} = I_{y} = ( π / 4 ) ( R^{4} - R_{i}^{4})

Where (when used in equations and this calculator):

W = load (force);

v and w = unit loads (force per unit of circumferential length);

G = Shear modulus of elasticity

F = Shape factor for the cross section (= Z / I c)

Z = Plastic section modulus

w and v = unit loads (force per unit of circumferential length);

ρ = unit weight of contained liquid (force per unit volume);

M_{o} = applied couple (force-length);

M_{A}, M_{B}, M_{c}, and M are internal moments at A;B;C, and x, respectively, positive as shown.

N_{A} N, V_{A}, and V are internal forces, positive as shown.

E = modulus of elasticity (force per unit area);

*v* = Poisson’s ratio;

A = cross-sectional area (length squared);

R = Outside radius to the centroid of the cross section (length);

R_{i} = Inside radius to the centroid of the cross section;

t = wall thickness

I = area moment of inertia of ring cross section about the principal axis perpendicular to the plane of the ring (length^{4}). [Note that for a pipe or cylinder, a representative segment of unit axial length may be used by replacing EI by Et^{3} / 12 (1 - v^{2} )

e ≈ I / ( R A) positive distance measured radially inward from the centroidal axis of the cross section to the neutral axis of pure bending

θ, x, and Φ are angles (radians) and are limited to the range zero to π for all cases except 18 and 19

s = sin θ

c = cos θ

z = sin x,

u = cos x

n = sin Φ

m = cos Φ

α - Hoop stress deformation factor

ΔD_{V} = Change in vertical diameter (in, mm),

ΔD_{H} = Change in horizontal diameter (in, mm),

ΔL = Change in lower half of vertical diameterthe vertical motion realative to point C of a line connecting points B and D on the ring,

ΔL_{W} = Vertical motion relative to point C of a horizontal line connecting the load points on the ring,

ΔL_{WH} = Change in length of a horizontal line connecting the load points on the ring,

ψ = angular rotation (radians) of the load point in the plane of the ring and is positive in the direction of positive θ.

Supplemental formulas (not included in calculator)

At each load position

Radial displacement at each load point = Δ*R _{B
}*

Radial displacement at x = 0.20, ... = Δ*R _{A
}*

Reference:

Roarks Formulas for Stress and Strain, 7th Edition, Table 9.2 Reference No. 5, loading, and load terms.

**© Copyright 2000 - 2020, by Engineers Edge, LLC www.engineersedge.com All rights reserved
Disclaimer
| Feedback | Advertising
| Contact **

Date/Time: