Shaft in Torsion Reliability Design Calculator		
Input cells shown as blue		
Transmitted horsepower $h p=$	9.6	hp
Shaft $N=$	1500.0	rpm
Shaft diameter $d=$	1.250	in
Materials tensile strength $\mathrm{T}_{\mathrm{S}}=$	36.00	kpsi
operating temperature $\mathrm{T}_{\text {AT }}=$	90.00	F
Modulus of elasticity $\mathrm{E}=$	46,000.0	$\mathrm{lbs} / \mathrm{in}^{2}$
Fluid radial unbalance force / load weight, F=	0.320	lbs/in2
Specified shaft deflection, $\mathrm{b}=$	0.008	in
Shaft length $\mathrm{X}=$	2.000	in
Diameter $\mathrm{D}_{\mathrm{x}}=$	6.000	in
Shaft length L =	0.000	in
Diameter $\mathrm{D}_{\mathrm{L}}=$	0.000	in
Shaft length M =	0.000	in
Diameter $\mathrm{D}_{\mathrm{M}}=$	0.000	in
Shaft length $\mathrm{N}=$	0.000	in
Diameter $\mathrm{D}_{\mathrm{N}}=$	0.000	in
Calculated Results		
Eq. 1, Torque $T=$	305.58	in-lbs
Eq. 2, Shear stress $S_{S}=$	796.82	$\mathrm{lbs} / \mathrm{in}^{2}$
Eq. 6, Area moment of inertia $\mathrm{I}_{\mathrm{x}}=$	63.62	in ${ }^{4}$
Eq. 6, Area moment of inertia $I_{L}=$	0.00	in ${ }^{4}$
Eq. 6, Area moment of inertia $\mathrm{I}_{\mathrm{M}}=$	0.00	in^{4}
Eq. 6, Area moment of inertia $\mathrm{I}_{\mathrm{N}}=$	0.00	in^{4}
Shaft Reliability Calculations		
Number of cycles to failure $\mathrm{N}_{\mathrm{f}}=$	$1.40 \mathrm{e}+007$	\#
Base failure rate for shaft, $\lambda_{\text {SH,B }}=$.142857142857	failures/mil.
Eq. 7 Multiplying factor $\mathrm{C}_{\mathrm{f}}=$	0.913	Machined / Cold Dra v
Material temperature multiplying factor $\mathrm{C}_{\mathrm{T}}=$	1.000	-
Shaft displacement multiplying factor $\mathrm{C}_{\mathrm{DY}}=$	$4.702 \mathrm{e}-7$	-
Initial shaft diameter D =	1.235	in
Transitioned shaft diameter, $\mathrm{d}=$	1.000	in
Radius of fillet $r=$	0.063	in
Groove depth $\mathrm{h}=$	0.070	in
Table 2 data $\mathrm{h} / \mathrm{r}=$	1.111	-
Taw 2 data $\mathrm{h} / \mathrm{D}=$	0.057	-
Stress concentration factor Table $2 \mathrm{C}_{\text {SC, }}=$	1.100	-
Stress concentration factor due to transition between shaft sections $\mathrm{C}_{\mathrm{SC}, \mathrm{R}}=$	1.665	-
Stress conc. factor shaft discontinuities $\mathrm{C}_{\text {SC }}=$	2.765	
Calculated Results		
Shaft failure rate, $\lambda_{S H}=$	$8.482 \mathrm{e}-14$	failures/million cycles

