Shaft in Torsion Reliability Design Calculator		
Input cells shown as blue		
Transmitted horsepower hp =	9.6	hp
Shaft <i>N</i> =	1500.0	rpm
Shaft diameter <i>d</i> =	1.250	in
Materials tensile strength T _S =	36.00	kpsi
operating temperature T _{AT} =	90.00	Ê
Modulus of elasticity E =	46,000.0	lbs/in ²
Fluid radial unbalance force / load weight, F =	0.320	lbs/in2
Specified shaft deflection, b =	0.008	in
Shaft length X =	2.000	in
Diameter D _x =	6.000	in
Shaft length L =	0.000	in
Diameter D _L =	0.000	in
Shaft length M =	0.000	in
Diameter D _M =	0.000	in
Shaft length N =	0.000	in
Diameter D _N =	0.000	in
Calculated Results		
Eq. 1, Torque <i>T</i> =	305.58	in-lbs
Eq. 2, Shear stress S _S =	796.82	lbs/in ²
Eq. 6, Area moment of inertia l _x =	63.62	in ⁴
Eq. 6, Area moment of inertia I _L =	0.00	in ⁴
Eq. 6, Area moment of inertia I _M =	0.00	in ⁴
Eq. 6, Area moment of inertia I _N =	0.00	in ⁴
Shaft Reliability Calculations		
Number of cycles to failure N _f =	1.40e+007	#
Base failure rate for shaft, $\lambda_{SH,B}$ =	7.142857142857	failures/mil.
Eq. 7 Multiplying factor C _f =	0.913	Machined / Cold Dra 🗸
Material temperature multiplying factor $C_T =$	1.000	-
Shaft displacement multiplying factor C _{DY} =	4.702e-7	-
Initial shaft diameter D =	1.235	in
Transitioned shaft diameter, d =	1.000	in
Radius of fillet r =	0.063	in
Groove depth h =	0.070	in
Table 2 data h/r=	1.111	-
Taw 2 data h/D =	0.057	-
Stress concentration factor Table 2 C _{SC.G} =	1.100	-
Stress concentration factor due to transition	1.665	
between shaft sections C _{SC,R} =		-
Stress conc. factor shaft discontinuities C _{SC} =	2.765	
Calculated Results		
Shaft failure rate, λ_{SH} =	8.482e-14	failures/million cycles